
Execute-Around
Pointer

Kilian Henneberger

kilis-mail@web.de

C++ Timeline

2

1979

Work on

C with

Classes

starts

call and

return

functions

1983

C++

named

1990

-91

1998

C++98

first ISO

standard

2014

2017

20201980

ISO

WG21

formed

2011

2003

C++03

C++11

C++14

C++17

C++20

• Wrap calls to an object in pairs of prefix and suffix code

• Simple, reusable and general solution

• Non-intrusive, applicable to existing classes

• E.g. mutex lock/unlock around member functions in a multithreaded environment

auto prefix = [](){};

auto suffix = [](){};

string object;

ExecuteAroundPointer wrapper(&object, prefix, suffix);

wrapper->assign("C++"); //prefix(), object.assign("C++"), suffix()

auto length = wrapper->size(); //prefix(), length = object.size(), suffix()

Motivation

3

• Temporary objects are destroyed as the last step in evaluating the expression that contains the point
where they were created

• If multiple temporary objects were created, they are destroyed in reverse order

• There are exceptions to that rule

• e.g. binding the temporary to a const lvalue reference or to an rvalue reference

struct Trace {
Trace() { cout << "ctor\n"; }
~Trace() { cout << "dtor\n"; }
void f() { cout << "f\n"; }

};

int main() {
cout << "1\n";
Trace().f();
cout << "2\n";

}

Temporary Object Lifetime

4

• Temporary objects are destroyed as the last step in evaluating the expression that contains the point
where they were created

• If multiple temporary objects were created, they are destroyed in reverse order

• There are exceptions to that rule

• e.g. binding the temporary to a const lvalue reference or to an rvalue reference

struct Trace {
Trace() { cout << "ctor\n"; }
~Trace() { cout << "dtor\n"; }
void f() { cout << "f\n"; }

};

int main() {
cout << "1\n";
Trace().f();
cout << "2\n";

}

Temporary Object Lifetime

5

1
ctor
f
dtor
2

• If a class overloads operator->, the operator-> is called again on the value that it returns

• This process repeats until a raw pointer is returned

• Finally, built-in semantics are applied to that raw pointer

struct Inner {
string s;
string* operator->() { return &s; }

};

struct Outer {
Inner inner;
Inner& operator->() { return inner; }

};

int main() {
Outer outer;
outer->assign("C++");

}

Overloading operator->

6

• If a class overloads operator->, the operator-> is called again on the value that it returns

• This process repeats until a raw pointer is returned

• Finally, built-in semantics are applied to that raw pointer

struct Inner {
string s;
string* operator->() { return &s; }

};

struct Outer {
Inner inner;
Inner& operator->() { return inner; }

};

int main() {
Outer outer;
outer->assign("C++");

}

Overloading operator->

7

outer.operator->().operator->()->assign("C++")

template<class Pointer, class Prefix, class Suffix>
class ExecuteAroundPointer {
Pointer ptr;
Prefix p;
Suffix s;

public:
ExecuteAroundPointer(Pointer ptr, Prefix p, Suffix s)
: ptr(ptr), p(p), s(s)

{}
CallProxy<Pointer&, Suffix&> operator->() {

p();
return CallProxy<Pointer&, Suffix&>(ptr, s);

}
};

• Pointer could be a raw pointer, a std::shared_ptr<T> or any other type that overloads operator->

Putting it all together – ExecuteAroundPointer

8

template<class Pointer, class Suffix>
class CallProxy {
Pointer ptr;
Suffix s;

public:
CallProxy(Pointer ptr, Suffix s)
: ptr(ptr), s(s)

{}
Pointer operator->() { return ptr; }
~CallProxy() { s(); }
CallProxy(const CallProxy&) = delete;
CallProxy& operator=(const CallProxy&) = delete;

};

• Important to delete copy- and move-operations as the suffix should only be called once

• Returning the CallProxy requires C++17 (Mandatory Copy Elision)

• There are pre C++17 solutions, too

Putting it all together – CallProxy

9

auto prefix = [](){};

auto suffix = [](){};

string object;

ExecuteAroundPointer wrapper(&object, prefix, suffix);

wrapper->assign("C++");

Putting it all together – Example

10

wrapper.operator->()
prefix()

CallProxy temp
temp.operator->()
string* rawPtrToObject
rawPtrToObject->assign("C++")
temp.~CallProxy()
suffix()

mutex m;

auto prefix = [&] { m.lock(); };

auto suffix = [&] { m.unlock(); };

string object;

ExecuteAroundPointer wrapper(&object, prefix, suffix);

auto action = [&] {

for (int i = 0; i != 100; ++i) {

wrapper->push_back('c');

}

};

array asyncActions = { async(action), async(action), async(action), async(action) };

for (auto& anAsyncAction : asyncActions) {

anAsyncAction.wait();

}

cout << object.size(); // 400

Use Case: Multithreading

11

• Use constructor and destructor of a temporary object to "wrap" a member function call by prefix and
suffix code

• Recursive execution of operator-> to first return a temporary proxy object and afterwards the
wrapped object

• Solution is simple, reusable and non-intrusive

• Limitations

• No access to the called member function, its arguments and its result

• Member access has to happen via operator->

Conclusion

12

• "More C++ Idioms/Execute-Around Pointer", Wikibooks, August 2007

https://en.wikibooks.org/wiki/More_C++_Idioms/Execute-Around_Pointer

• "Wrapping C++ Member Function Calls", Bjarne Stroustrup, June 2000

http://www.stroustrup.com/wrapper.pdf

References

13

https://en.wikibooks.org/wiki/More_C++_Idioms/Execute-Around_Pointer
http://www.stroustrup.com/wrapper.pdf

