
C++ is a resource-safe language

Lightning Talk for emBO++ 2021

Kilian Henneberger

kilis-mail@web.de



• A resource is something that must be acquired and later released

• Examples are memory, sockets, file handles, locks and thread handles

• Failing to release a resource in a timely manner can cause performance degradation and even a crash

What is a resource?

2



Confession

3

• I have never worked on embedded systems



• Working with resources is essential for every developer throughout each domain and language

• During my career as a software developer I already leaked one or the other resource

• memory leaks

• did not unbind a socket from a port

• did not properly flush and close a file handle

• abort got called due to forgotten thread

• These leaks happened in various programming languages

• By now I am convinced that in C++ this can categorically be avoided

United by the same problem

4



C++ Timeline

5

1979

Work on 

C with 

Classes 

starts

Constructors

and

Destructors

1983

C++ 

named

1990

-91

1998

C++98 

first ISO 

standard

2014

2017

20201980

ISO 

WG21 

formed

2011

2003

C++03

C++11
rvalue

references

C++14

C++17

C++20



• C++ automatically constructs and destroys local variables

• Calls constructor when initializing and destructor when destroying

• We make use of that and bind the life cycle of a resource to a local variable

• Encapsulate each resource into a class, where

• the constructor acquires the resource and establishes all class invariants
(or throws an exception if that cannot be done)

• the destructor releases the resource
(and never throws an exception)

• Only ever access the resource via a local variable of that RAII-class

• Each Resource Acquisition Is always an Initialization of a local variable

Resource-safe programming via RAII

6



• C++ automatically constructs and destroys local variables

• Calls constructor when initializing and destructor when destroying

• We make use of that and bind the life cycle of a resource to a local variable

• Encapsulate each resource into a class, where

• the constructor acquires the resource and establishes all class invariants
(or throws an exception if that cannot be done)

• the destructor releases the resource
(and never throws an exception)

• Only ever access the resource via a local variable of that RAII-class

• Each Resource Acquisition Is always an Initialization of a local variable

Resource-safe programming via RAII

7



• The STL follows this pattern to provide useful and resource-safe types

• Container
• vector, forward_list, set, unordered_map

• Smart pointers
• unique_ptr, shared_ptr

• Guards for (Basic -)Lockables
• lock_guard, unique_lock, scoped_lock

• There are requirements that go beyond the current <scope> of the STL

1. Managing objects through non-pointer-handles ("Smart handles")

2. RAII-style thread (finally addressed in C++20)

RAII-classes in the STL

8



• unique_ptr and shared_ptr support management via pointers

• In fact, unique_ptr supports any NullablePointer, but IMHO its usage is unpleasant

• OpenGL uses integers as handles

GLuint glCreateShader(GLenum shaderType);

void glDeleteShader(GLuint shader);

• Similar like we don't want to use raw owning pointers, we don't want to use a raw owning GLuint

• glCreateShader returns a non-zero value on success and zero upon failure

RAII-class for a non-pointer-handle

9



class glShader {

GLuint m_handle = 0;

public:

glShader() = default;

explicit glShader(GLenum shaderType) : m_handle(glCreateShader(shaderType))

{ if (m_handle == 0) throw shader_error(); }

~glShader() { if (m_handle != 0) glDeleteShader(m_handle); }

glShader(glShader&& rhs) noexcept : m_handle(std::exchange(rhs.m_handle, 0)) { }

glShader& operator=(glShader&& rhs) noexcept {

std::swap(m_handle, rhs.m_handle);

return *this;

}

GLuint get() const { return m_handle; }

};

RAII-class for an OpenGL-Shader

10



• Peter Sommerlad et al.: p0052 - Generic Scope Guard and RAII Wrapper for the Standard Library
https://wg21.link/p0052

• Peter Sommerlad: Woes of Scope Guards and Unique_Resource - 5+ years in the making,
CppCon 2018, https://www.youtube.com/watch?v=O1sK__G5Nrg

• Proposes a new header <scope>

struct glShaderDeleter {

void operator()(GLuint handle) noexcept { glDeleteShader(handle); }

};

using glShader = std::unique_resource<GLuint, glShaderDeleter>;

glShader shader(glCreateShader(shaderType), glShaderDeleter());

GLuint raw = shader.get();

• I can recommend to look at that paper and add an implementation to your code base

P0052 on its way!

11

https://wg21.link/p0052
https://www.youtube.com/watch?v=O1sK__G5Nrg


• Is std::thread a resource-safe type?

int main() {
thread t([]{});

}

std::thread

12



• Is std::thread a resource-safe type? No!

int main() {
thread t([]{});

}

• std::terminate is called when destroying
or assigning to a joinable std::thread

• A std::thread is joinable if it has an associated native thread

• I.e. it was not default-constructed and not moved-from
and neither join() nor detach() have been called

std::thread

13



• Is std::thread a resource-safe type? No!

int main() {
thread t([]{});

}

• std::terminate is called when destroying
or assigning to a joinable std::thread

• A std::thread is joinable if it has an associated native thread

• I.e. it was not default-constructed and not moved-from
and neither join() nor detach() have been called

std::thread

14

What?! Why don't 
you just join? 



struct guarded_thread : std::thread {

using thread::thread;

guarded_thread(guarded_thread&& rhs) = default;

guarded_thread& operator=(guarded_thread&& rhs) noexcept {

if (joinable()) join();

thread::operator=(std::move(rhs));

return *this;

}

~guarded_thread() { if (joinable()) join(); }

};

Writing our own resource-safe* thread

15



struct guarded_thread : std::thread {

using thread::thread;

guarded_thread(guarded_thread&& rhs) = default;

guarded_thread& operator=(guarded_thread&& rhs) noexcept {

if (joinable()) join();

thread::operator=(std::move(rhs));

return *this;

}

~guarded_thread() { if (joinable()) join(); }

};

Writing our own resource-safe* thread

16

Hey! What does this 
asterisk mean?



class ThreadPool {
std::atomic_bool m_continueRunning;
guarded_thread m_first;
guarded_thread m_second;
void Work() {

while (m_continueRunning) {
std::cout << "I am doing some work\n";
std::this_thread::sleep_for(std::chrono::milliseconds(10));

}
}

public:
ThreadPool()

: m_continueRunning(true),
m_first([this] { Work(); }),
m_second([this] { Work(); })

{ }
~ThreadPool() {

m_continueRunning = false;
//m_first and m_second get automatically joined here

}
};

Using guarded_thread in a thread pool

17



Exception specification of std::thread

18



class ThreadPool {
std::atomic_bool m_continueRunning;
guarded_thread m_first;
guarded_thread m_second;
void Work() {

while (m_continueRunning) {
std::cout << "I am doing some work\n";
std::this_thread::sleep_for(std::chrono::milliseconds(10));

}
}

public:
ThreadPool()

: m_continueRunning(true),
m_first([this] { Work(); }),
m_second([this] { Work(); })

{ }
~ThreadPool() {

m_continueRunning = false;
//m_first and m_second get automatically joined here

}
};

What if the initialization of m_second throws?

19



• Added to the STL in C++20

• Already implemented by MSVC's STL and gcc's libstdc++

• Nicolai Josuttis: Why and How we fixed std::thread by std::jthread, C++ on Sea 2020
https://www.youtube.com/watch?v=elFil2VhlH8

class jthread {

thread impl;

stop_source ssource;

};

• Automatically joins on destruction and assignment instead of calling std::terminate
• if (impl.joinable()) { ssource.request_stop(); impl.join(); }

• A stop_source provides functions to issue a stop-request

• A stop_token is an interface for querying if a stop-request on its associated stop_source has been 
made

std::jthread to the rescue!

20

void MyThreadFunction(stop_token stoken) {
while (!stoken.stop_requested()) {

//continue doing work
}

}

https://www.youtube.com/watch?v=elFil2VhlH8


class ThreadPool {
jthread m_first;
jthread m_second;
void Work(std::stop_token stoken) {

while (!stoken.stop_requested()) {
std::cout << "I am doing some work\n";
std::this_thread::sleep_for(std::chrono::milliseconds(10));

}
}

public:
ThreadPool()

: m_first([this](std::stop_token stoken) { Work(stoken); }),
m_second([this](std::stop_token stoken) { Work(stoken); })

{ }
};

Using std::jthread in a thread pool

21



class ThreadPool {
jthread m_first;
jthread m_second;
void Work(std::stop_token stoken) {

while (!stoken.stop_requested()) {
std::cout << "I am doing some work\n";
std::this_thread::sleep_for(std::chrono::milliseconds(10));

}
}

public:
ThreadPool()

: m_first([this](std::stop_token stoken) { Work(stoken); }),
m_second([this](std::stop_token stoken) { Work(stoken); })

{ }
};

Using std::jthread in a thread pool

22

Finally!



• Follow the RAII-style to write resource-safe C++ code

• Code that acquires a resource should:
• Be within a constructor: glShader vertexShader(GL_VERTEX_SHADER);

• Or be directly passed to one: shared_ptr<void> sharedLib(dlopen(...), &dlclose);

• Code that releases a resource should be within a destructor
• If you find a release-function in any other place, it is not guaranteed to be called => potential bug

• But still:

• It can be tedious

• It can be hard to get it right

• C++ is a resource-safe language, but we need support from professional libraries

Conclusion

23



Thank you
for your attention

Kilian Henneberger

kilis-mail@web.de


